

Redefining Retail Automation: A Comprehensive Survey on Intelligent Shopping Carts with Sensing, Connectivity, and Decision Intelligence

Siva P. Raj¹, Kashinath S², Faith R. Saju³, Haroon M⁴, Neethu Susan Alex⁵

^{1,2,3,4}UG Scholar, Department of Electronics and Communication Engineering, UKF College of Engineering and Technology, Kollam, India

⁵Assistant Professor, Department of Electronics and Communication Engineering, UKF College of Engineering and Technology, Kollam, India

ABSTRACT

The rapid growth of retail automation has led to intelligent shopping systems that streamline inventory management, product identification, billing, navigation, and customer assistance. RFID-enabled automatic billing carts improve shopping efficiency by providing real-time item detection and eliminating checkout delays, while later systems incorporate IoT platforms, mobile applications, and cloud connectivity for synchronized transactions and enhanced user interaction. Advanced carts now support self-following and autonomous navigation using computer vision, radar, UWB, SLAM, and sensor fusion frameworks, and AI-driven models enable personalized recommendations, inventory forecasting, and behavioral analytics. Despite these advancements, challenges such as scalability, multi-user interference, item-removal detection, security, and high implementation cost remain. This review analyzes 14 studies to compare sensing methods, billing mechanisms, communication models, and automation techniques while identifying gaps related to navigation reliability, interoperability, and privacy. The study further highlights future opportunities in multimodal sensing, dynamic pricing, edge-AI cart autonomy, secure self-checkout, and LLM-based customer engagement for next-generation autonomous smart retail environments.

Index Terms - Smart shopping cart, RFID, IoT, autonomous navigation, sensor fusion, AI in retail, cloud computing, edge AI, real-time billing, UWB localization, SLAM, customer behavior analytics, self-checkout automation.

INTRODUCTION

Barcode scanning, manual product selection, and queue-based invoicing are all major components of the traditional retail shopping model, which frequently leads to lengthy checkout times, a greater reliance on labor, and worse consumer satisfaction. Researchers have developed smart shopping systems that combine RFID-based item recognition, embedded computation, Internet of Things connectivity, and autonomous navigation to overcome these drawbacks and provide a productive, contact-less, and user-friendly shopping experience [2][5][6][9]. Only RFID-based automatic billing was the focus of the first smart cart systems; each product tag is identified as it is placed inside the trolley, enabling real-time cost calculation without the need for human interaction [2][5]. Although these systems showed notable decreases in checkout time, they lacked scalable backend management, mobility intelligence, and consumer engagement features.

With the rise of the Internet of Things, researchers extended RFID carts into network-connected smart systems capable of sending purchase data to cloud servers, enabling features such as mobile app integration, live billing visibility, and online receipt generation [1][7][10]. Further advancements included weight sensors, barcode scanning modules, mobile cart interfaces, and Wi-Fi-based communication, enabling multifunctional cart-based retail assistance [7]. However, these systems still required customer-driven navigation and lacked autonomous movement.

Incorporating technologies like computer vision, radar following, UWB indoor localization, and SLAM-based mapping, recent advancements have shifted toward AI-driven and sensor-fusion-enabled smart shopping carts that can autonomously traverse shelves or follow users [11][14]. Higher-level retail intelligence is now possible through the application of machine learning models for inventory forecasting, dynamic product recommendation, and customer behavior prediction [12][13][14]. These contemporary solutions assist unmanned supermarket concepts by going

beyond checkout automation to fully automate the store.

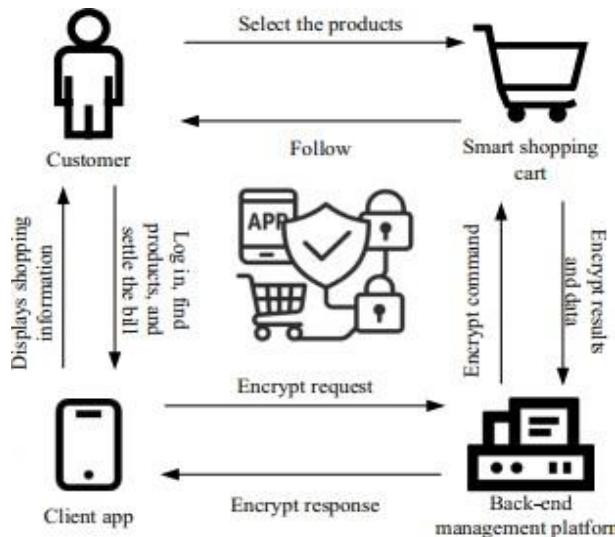
Even though there has been a lot of improvement, issues including multi-tag RFID collision, item removal detection, localization drift, complicated indoor navigation, security flaws, and a lack of universal retail compatibility still plague current solutions [3][8][11]. Furthermore, a lot of systems are made for prototype-level demonstration and don't take into account full deployment requirements like backend monitoring, multi-cart coordination, database scalability, or fraud-proof checkout.

In order to compare smart shopping cart architectures, sensor technologies, communication models, billing mechanisms, navigation methods, AI integration, and user interaction modules, this review article looks at 14 studies that were published between 2014 and 2025. In order to establish fully autonomous, secure, and commercially successful smart retail ecosystems, it is necessary to classify the development of smart shopping systems, highlight accomplishments and constraints, and pinpoint unresolved research gaps.

A. Problem Statement

Existing solutions are still constrained by problems with item misdetection, lack of item-removal validation, unreliable indoor tracking, system scalability, cost feasibility, and inadequate data security, despite the fact that numerous smart shopping cart systems have been proposed using RFID, IoT, sensor fusion, autonomous navigation, and AI-based retail intelligence. The majority of works concentrate on discrete features like cloud-based cart monitoring [1][7][10], autonomous movement [11][14], or automatic billing [2][5][6][9], but none offer a completely integrated, secure, and commercially deployable end-to-end system. Furthermore, most systems have only been tested in controlled or prototype settings, ignoring real-world limitations including network instability, multi-cart interference, privacy laws, and customer usability considerations. A unified and scalable smart shopping framework that guarantees precise product detection, safe data processing, smooth user interaction, and dependable autonomous operation in dynamic retail contexts is thus in need of further development.

B. Related Works


From RFID-based billing carts to IoT-connected smart trolleys and finally AI-driven autonomous retail systems, research on automated shopping systems has progressed through several technological phases. The primary focus of early installations was RFID billing automation, which does away with the need for manual checkout counters by scanning each product tag within the cart and updating the overall cost in real time. [2][5][6][9]. Although these systems showed that self-billing was feasible, they lacked dynamic product management, network connectivity, and user identity.

Later systems included cloud platforms, mobile applications, and the Internet of Things to improve usability. This allowed consumers to examine cart data, receive notifications, and make digital payments [1][7][10]. Smarter shop workflows were supported by these connected smart carts' live item tracking, wireless data synchronization, and backend inventory updates. They limited automation, though, by still requiring users to push or maneuver the cart by hand.

In order to preserve privacy and stop billing manipulation, a new research path offered security-enhanced and cryptographically protected smart retail systems. These architectures encrypt data between RFID carts and servers utilizing TLS-based protocols or ECC [3][14]. These technologies demonstrated how crucial secure retail IoT environments are, particularly for deployments of unmanned stores.

Recent systems use radar, UWB location, SLAM mapping, load cells, or computer vision to enable carts that track client movement or explore shelves independently [7][11][14]. These systems go beyond billing and connectivity to include autonomous navigation, sensor fusion, and robotic following. With support for self-moving carts, obstacle detection, and indoor route planning, these projects moved the emphasis from basic cart-based invoicing to complete robotic retail automation.

By incorporating personalized suggestions, demand prediction, and consumer behavior-modeling, as well as by employing collaborative filtering algorithms, LSTM forecasting, or reinforcement learning to enhance retail decision-making and user experience, AI-enabled systems further enhanced their capabilities [12][13][14]. By combining advanced analytics with shopping assistance, these intelligent carts seek to change the cart's function from that of a passive carrier to that of an active retail assistant.

Fig. 1. Overall architecture of a full smart shopping system integrating smart cart, client app, and backend platform .

A whole smart shopping ecosystem intended for semi-automated or unmanned retail establishments is depicted in Figure 1. The intelligent shopping cart at the center of the system is outfitted with embedded computer, communication, product identification, and user-interaction modules. The smart cart handles item identification, cost calculation, and billing on its own without the assistance of conventional checkout counters. Depending on how it is implemented, the sensing system (RFID, barcode, or vision-based identification) recognizes the item as soon as the customer puts it in the cart and instantly updates the bill.

The main retail management platform, a cloud-based backend server, is in wireless communication with the smart cart. Product databases, pricing guidelines, stock levels, and purchase records are all kept up to date on this server. For synchronization and analytics purposes, the server receives all cart-side transactions, including product scanning, cart status, and customer session data. Additionally, the backend manages automated bill generation, fraud detection, cart-server communication security, and authentication.

At the same time, a mobile application interface allows the user and the cart to communicate. Through the app, users may check rewards or offers, see live billing, get product recommendations, and finish the purchase process. This completely does away with the need to wait in line and deal with a cashier. Additionally, the software assists in locating digital receipts, purchase summaries, and store navigation routes.

Because of the architecture's full scalability, several carts connected to a single cloud platform can function within the same retail space. Additionally, the design makes it possible to integrate optional modules like automated inventory forecasting, interior navigation, AI-based recommendation systems, and customer behavior tracking. Therefore, the architecture serves as the technological basis for the next generation of unmanned smart stores, where autonomous retail technologies either replace or support human employees [14].

OBJECTIVES

This review paper's primary goal is to thoroughly analyze the smart shopping cart systems that have been created in the last ten years and categorize them according to the underlying technologies that underpin them, such as AI-driven decision-making, autonomous navigation, RFID-based billing, and IoT-enabled retail connectivity. This evaluation compares the design approaches, sensing techniques, communication models, and system intelligence levels of fourteen chosen research works in order to determine their advantages and disadvantages for practical implementation. In order to provide a clear picture of the development trend in smart retail automation, another goal is to emphasize the technological evolution from early RFID-only systems toward multi-sensor, cloud-integrated, and AI-assisted autonomous carts. Finding the main research gaps that still exist, such as those in item-removal detection, multi-cart scalability, data security, localization accuracy, and commercial viability, is another objective. Based on these findings, future research directions for completely automated, safe, and user-adaptive smart shopping environments will be outlined. For academics and developers working on next-generation smart retail systems with enhanced accuracy, usability, integration capability, and deployment readiness, this assessment ultimately seeks to provide a reference basis.

METHODOLOGY

This review follows a structured five-stage methodology to ensure a systematic, unbiased, and comprehensive analysis of existing smart shopping cart research. First, a literature search was conducted across IEEE Xplore, SpringerLink, Elsevier ScienceDirect, and Google Scholar using keywords such as "RFID smart cart," "automatic billing trolley," "AI retail automation," "IoT shopping system," and "autonomous shopping cart." A total of 48 papers were initially identified.

Second, a screening and filtering process was applied based on publication type, relevance, year (2014–2025), technical contribution, and availability of system architecture details, resulting in 14 final papers selected for review. Third, the selected papers were categorised into four thematic groups based on their primary technological focus: RFID-based billing systems, IoT-enabled smart carts, autonomous and self-navigating carts, and AI-driven intelligent retail systems.

After classification, a comparative analysis was performed by examining parameters such as sensing method, communication protocol, hardware platform, intelligence level, user interaction model, and deployment feasibility. Finally, research gaps were identified by evaluating unresolved challenges across all four categories, including security, item-removal detection, real-world scalability, navigation robustness, and system cost constraints.

COMPARATIVE ANALYSIS

Smart shopping cart systems have clearly evolved from single-function RFID billing models to multi-modal, AI-enabled autonomous carts, as evidenced by the examined works. Using passive RFID tags and microcontroller-based displays, early systems mainly concentrate on automatic product recognition and on-cart billing, so doing away with manual checkout. However, they lack item-removal detection, theft prevention, and safe data management. [2], [5], [6], [9]. By combining wireless communication, cloud databases, and customer-linked mobile applications, IoT-based designs expand these capabilities and enable digital receipts and remote billing visibility. However, they still rely on constant internet availability and cause latency problems in real-time store environments [1], [7], and [10].

In order to achieve self-navigation and user-following behavior, autonomous cart systems use sensor fusion, radar tracking, SLAM, UWB localization, and onboard computation. This improves accessibility and physical assistance, but it still faces operational instability in crowded indoor layouts and dynamic store environments [11], [14]. Through recommendation engines, inventory forecasting, and adaptive routing based on reinforcement learning or LSTM prediction models, AI-driven systems further improve retail intelligence; however, these solutions come with a higher hardware cost, necessitate extensive customer datasets, and raise privacy concerns [12], [13], and [14]. Security implementations are still uneven across all categories; only a small percentage of systems use secure payment channels, verified product validation, or end-to-end encryption [3], [14]. Similar to this, the majority of studies merely test prototypes rather than implementing them on a wide scale for commercial use, which leaves scalability [14]. In conclusion, the comparative analysis demonstrates that no current system completely integrates AI-based personalization, autonomous mobility, safe transaction flow, accurate product detection, and realistic deployment readiness into a single integrated solution.

RESEARCH GAPS IDENTIFIED IN EXISTING WORKS

Even though smart shopping systems have advanced significantly, there are still a number of technical and useful gaps in the examined research works. Although early RFID-based billing carts increased checkout speed, they were devoid of features like safe transaction handling, multi-tag collision avoidance, and real-time item validation [2][5][6][9]. Most RFID systems also fail to detect item removal after addition, making them vulnerable to billing errors and shoplifting — a problem still not fully addressed in later IoT-based systems [1][7].

Cloud connectivity and app-based billing were made possible by IoT-enabled carts, but their deployment in big supermarkets and underdeveloped nations is limited since they need constant network access and are not designed for offline or low-bandwidth retail settings [1][10]. Furthermore, the majority of these systems rely on single-sensor architectures (barcode, RFID, or weight sensor), which leads to poor accuracy in cases where users mishandle or swap out goods without scanning.

Mobility problems are resolved by autonomous and self-navigating carts, but they also create new gaps in user tracking robustness, obstacle-dense movement, and indoor localization drift, particularly during peak retail hours [11][14]. Many of these works are only evaluated in controlled lab settings and do not take into account real-world factors including wet-floor sensor failures, cart-to-cart interference, dynamic shelf layouts, and crowds.

AI-driven designs integrate forecasting, recommendation, and adaptive decision-making, but they rely heavily on large datasets and high-cost hardware, making them unsuitable for small-scale commercial deployment [12][13]. In

addition, existing AI solutions do not address privacy-preserving analytics, although continuous customer tracking and purchase profiling may violate user data policies.

Security, scalability, and cost viability are still lacking in all four system classes. A complete end-to-end cybersecurity model for unmanned retail environments is not provided by any of the publications that propose encrypted communication or authentication layers [3][14]. Large-scale commercial adoption is also limited because none of the studied systems offer a standardized architecture for interoperability between carts, store servers, and multi-vendor product databases.

CONCLUSION

This analysis examined fourteen studies that were published between 2014 and 2025 and covered topics such as AI-driven retail intelligence models, autonomous navigation systems, IoT-enabled smart trolleys, and RFID-based billing carts. A fully integrated, scalable, and secure smart retail platform is not yet achieved by any of the current solutions, according to the comparative study. RFID solved checkout delays, IoT solved data synchronization, autonomous carts solved physical assistance, and AI solved customer-centric personalization.

The research gaps identified include the absence of universal product-validation standards, limited real-world deployment testing, weak security models, and high implementation cost. While current systems demonstrate strong prototype-level feasibility, large-scale commercial adoption will require interoperability, robust sensing, reliable indoor navigation, and compliance with privacy and digital-payment regulations.

All things considered, smart shopping carts are a quickly expanding field of study with significant industrial implications. By transforming traditional retail into a completely automated, user-adaptive, and data-driven shopping experience, edge computing, AI support, and secure IoT infrastructures could pave the way for the next generation of unmanned smart stores.

FUTURE SCOPE

Strong potential for additional developments in sensing precision, autonomous navigation, user engagement, and safe retail automation is indicated by the emergence of smart shopping cart systems. In order to prevent single-point failure and ensure dependable item tracking in actual store conditions, future systems are anticipated to implement multi-sensor fusion, merging RFID, computer vision, weight sensing, and UWB/SLAM-based localization. While cloud servers manage long-term analytics and inventory forecasting, edge-AI processing can minimize latency by completing billing, route planning, and product suggestion locally on the cart.

Dynamic obstacle management, multi-cart coordination, and self-mapping capabilities will be necessary for the full-scale implementation of autonomous carts in commercial supermarkets. These features will allow carts to adjust to shifting store layouts without the need for human recalibration. Zero-knowledge customer authentication, blockchain-based billing, and encrypted retail IoT networks will all be integrated as security becomes a top focus. Furthermore, LLM-based voice interaction may be used by next-generation systems, enabling users to query the cart for offers, product locations, or customized recommendations.

Smart carts can function as mobile data-collection nodes for retail businesses, allowing for real-time shelf analytics, product heat mapping, and customer behavior modeling. The last phase of this evolution suggests completely automated smart retail environments, in which staff intervention is not necessary for autonomous carts, robotic restockers, and AI-based pricing algorithms to function.

REFERENCES

- [1]. Anitta D., Karthik Yanamala, Sahana Siddappa Guddad, Sahithi S., and Anusha S., "Smart Shopping Cart Using IoT and Robotic Arm", 2021 International Conference on Design Innovations for 3Cs: Compute, Communicate, Control (ICDI3C), 2021.
- [2]. Manikandan S., Udhayakumar S., Harish Murugan A., Yokesh D., and Kamal S., "RFID based Smart Trolley Billing System using IoT", Proceedings of the International Conference on Intelligent Computing and Control Systems (ICICCS-2025), 2025.
- [3]. R. Li, T. Song, N. Capurso, J. Yu, J. Couture, and X. Cheng, "IoT Applications on Secure Smart Shopping System," IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1945–1954, Dec. 2017.
- [4]. Tapan Kumar Das, Asis Kumar Tripathy, and Kathiravan Srinivasan, "A Smart Trolley for Smart Shopping", IEEE International Conference on Smart Computing and Applications (ICSCAN 2020), 2020.
- [5]. Gaurav Pathak, Kajal Sharma, and Khadim Moin Siddiqui, "Efficient Shopping: RFID-Powered Cart with Automated Billing System", Proceedings of the 2024 Second International Conference on Computational and Characterization Techniques in Engineering & Sciences (IC3TES), 2024.

- [6]. Mobeen Shahroz, Muhammad Faheem Mushtaq, Maqsood Ahmad, Saleem Ullah, Arif Mehmood, and Gyu Sang Choi, "IoT-Based Smart Shopping Cart Using Radio Frequency Identification", IEEE Access, Vol. 8, April, 2020.
- [7]. Kowshika S, Madhu Mitha S.S, Madhu Varshini G, Megha V, and Lakshmi K, "IoT based Smart Shopping Trolley with Mobile Cart Application", Proceedings of the 2021 7th International Conference on Advanced Computing & Communication Systems (ICACCS), 2021.
- [8]. Javad Rezazadeh, Kumbesan Sandra-segaran, and Xiaoying Kong, "A Location- Based Smart Shopping System with IoT Technology", International Journal Publication on Smart City Innovations, 2019.
- [9]. P. Chandrasekar and T. Sangeetha, "Smart Shopping Cart with Automatic Billing System through RFID and ZigBee", Proceedings of the 2014 IEEE International Conference on Information, Communication and Embedded Systems (ICICES), 2014.
- [10]. J. Wang, "Enhancing the e-commerce shopping experience with IoT-enabled smart carts in smart stores", Discover Internet of Things, Vol. 5, 2025.
- [11]. W. Feng, Y. Guo, G. Li, and X. Zhu, "Radar Self-Following Shopping Cart Based on Multi-Sensor Fusion", IEEE Access, 2023.
- [12]. M. I. Zulfiqar, A. Khalid, A. Siddig, M. J. Nawaz, and S. Saay, "AI-Driven Smart Shopping Carts With Real-Time Tracking and Inventory Forecasting for Enhanced Retail Efficiency", IEEE Access, Vol. 13, April, 2025.
- [13]. A. Galdelli, R. Pietrini, A. Mancini, and P. Zingaretti, "Retail Robot Navigation: A Shopper Behavior-Centric Approach to Path Planning", IEEE Access, Vol. 12, April, 2024.
- [14]. X. Liang, Y. Qi, S. Xi, G. Meng, and Z. Wang, "Design and development of full self-service smart shopping system for unmanned supermarket", Journal of King Saud University – Computer and Information Sciences, Vol. 37, Month —, 2025.